复杂度为 O(1) 的「最不常用」缓存算法的 Python 实现

这篇文章描述了怎么用 Python 实现复杂度为 O(1) 的「最不常用」(Least Frequently Used, LFU)缓存回收算法。在 Ketan Shah、Anirban Mitra 和 Dhruv Matani的论文中有算法描述。实现中的命名是按照论文中的命名。

LFU 缓存回收机制对于 HTTP 缓存网络代理是非常有用的,我们可以从缓存中移除那些最不常使用的条目。

本文旨在设计一个其所有操作的时间复杂度都只有 O(1)的 LFU 缓存算法,这些操作包括了插入、访问和删除(回收)。

这个算法中用了双向链表。其一是用于访问频率,链表中的每个结点都包含一个链表,其中的元素有相同的访问频率。假设缓存中有5个元素。有两个元素被访问了一次,三个元素被访问了两次。在这个例子中,访问频率列表有两个结点(频率为1和2)。第一个频率结点的链表中有两个结点,第二个频率结点的链表中有三个结点。

overview

我们要怎么构建它呢?我们需要的第一个对象是结点:

接下来是双向链表。每个结点有 prev 和 next 属性,分别等于前一个和下一个结点。head 被设为第一个结点,tail 被设为最后一个结点。

doubly_linked_list

我们可以为双向链表定义方法来在链表尾部加入结点,插入结点,删除结点以及获得链表所有结点的数据。

访问频率双向链表中的每个结点都是一个频率结点(下图中的Freq Node)。它是一个结点,同时也是一个包含有相同频率的元素(下图中Item node)的双向性链表。每个条目结点都有一个指向其频率结点父亲的指针。

freq_item_lists

条目结点的数据等于我们要存储的元素的键,这个键可以是一条HTTP请求。内容本身(例如HTTP响应)存储在字典中。字典中的每个值是LfuItem类型,”data”是缓存的内容,”parent”是指向频率结点的指针,”node”是指向频率结点下条目结点的指针。

lfu_item

我们已经定义了数据对象类,现在可以定义缓存对象类了。它有一个双向链表(访问频率链表)和一个包含LFU条目(上面的LfuItem)的字典。我们定义两个方法:一个用来插入频率结点,一个用来删除频率结点。

下一步是定义方法来插入到缓存,访问缓存以及从缓存中删除。

我们来看看插入方法的逻辑。它以一个键和值为参数,例如HTTP请求和响应。如果没有频率为1的频率结点,它就被插入到访问频率双向链表的开头。一个条目结点被加入到频率结点的条目双向链表。键和值被加入到字典中。复杂度是O(1)。

我们在缓存中插入两个元素,得到:

insert我们来看看访问方法的逻辑。如果键不存在,我们抛出异常。如果键存在,我们把条目结点移到频率加一的频率结点的链表中(如果频率结点不存在就增加这个结点)。复杂度是O(1)。

如果我们访问Key 1的条目,这个条目结点就被移动到频率为2的频率结点之下。我们得到:

access如果我们访问Key 2的条目,这个条目结点就被移动到频率为2的频率结点之下。频率为1的频率结点会被删除(译注:因为它之下没有条目结点了),我们得到:

access_2我们再看看delete_lfu方法。它把最不常使用的条目从缓存中删除。为此,它删除第一个频率结点下的第一个条目结点,同时从字典删除对应的LFUItem对象。如果此操作过后,频率结点的链表为空,就删除这个频率结点。

如果在缓存上调用delete_lfu,数据为Key 1的条目结点和它的LFUItem将被删除。我们得到:

delete_lfu

打赏支持我翻译更多好文章,谢谢!

打赏译者

打赏支持我翻译更多好文章,谢谢!

任选一种支付方式

1 3 收藏 1 评论

关于作者:demoZ

相关文章

可能感兴趣的话题



直接登录
最新评论
  • insert方法的最后两行代码有误,应该是
    item_node = freq_node.add_item_node(key)
    self.items[key] = LfuItem(value, freq_node, item_node)

跳到底部
返回顶部