举例讲解 Python 中的死锁、可重入锁和互斥锁

简单来说,死锁是一个资源被多次调用,而多次调用方都未能释放该资源就会造成死锁,这里结合例子说明下两种常见的死锁情况。

1、迭代死锁

该情况是一个线程“迭代”请求同一个资源,直接就会造成死锁:

上例中,在run函数的if判断中第一次请求资源,请求后还未 release ,再次acquire,最终无法释放,造成死锁。这里例子中通过将print下面的两行注释掉就可以正常执行了 ,除此之外也可以通过可重入锁解决,后面会提到。

2、互相调用死锁

上例中的死锁是在同一个def函数内多次调用造成的,另一种情况是两个函数中都会调用相同的资源,互相等待对方结束的情况。如果两个线程分别占有一部分资源并且同时等待对方的资源,就会造成死锁。

这个死锁的示例稍微有点复杂。具体可以理下。

二、可重入锁

为了支持在同一线程中多次请求同一资源,python提供了“可重入锁”:threading.RLock。RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。这里以例1为例,如果使用RLock代替Lock,则不会发生死锁:

和上面那个例子的不同之处在于threading.Lock()换成了threading.RLock() 。

三、互斥锁
python threading模块有两类锁:互斥锁(threading.Lock )和可重用锁(threading.RLock)。两者的用法基本相同,具体如下:

RLock的用法是将threading.Lock()修改为threading.RLock()。便于理解,先来段代码:

这里执行的结果和想想的不同,结果如下:

为什么结果都是30呢?关键在于global 行和 time.sleep行。

1、由于x是一个全局变量,所以每次循环后 x 的值都是执行后的结果值;

2、由于该代码是多线程的操作,所以在sleep 等待的时候,之前已经执行完成的线程会在这等待,而后续的进程在等待的5秒这段时间也执行完成 ,等待print。同样由于global 的原理,x被重新斌值。所以打印出的结果全是30 ;

3、便于理解,可以尝试将sleep等注释,你再看下结果,就会发现有不同。

在实际应用中,如抓取程序等,也会出现类似于sleep等待的情况。在前后调用有顺序或打印有输出的时候,就会现并发竞争,造成结果或输出紊乱。这里就引入了锁的概念,上面的代码修改下,如下:

执行的结果如下:


加锁的结果会造成阻塞,而且会造成开锁大。会根据顺序由并发的多线程按顺序输出,如果后面的线程执行过快,需要等待前面的进程结束后其才能结束 --- 写的貌似有点像队列的概念了 ,不过在加锁的很多场景下确实可以通过队列去解决。

1 4 收藏 评论

相关文章

可能感兴趣的话题



直接登录
跳到底部
返回顶部