Python yield与实现

Python yield与实现

yield的功能类似于return,但是不同之处在于它返回的是生成器

生成器

生成器是通过一个或多个yield表达式构成的函数,每一个生成器都是一个迭代器(但是迭代器不一定是生成器)。

如果一个函数包含yield关键字,这个函数就会变为一个生成器。

生成器并不会一次返回所有结果,而是每次遇到yield关键字后返回相应结果,并保留函数当前的运行状态,等待下一次的调用。

由于生成器也是一个迭代器,那么它就应该支持next方法来获取下一个值。

基本操作

除了next函数,生成器还支持send函数。该函数可以向生成器传递参数。

应用

最经典的例子,生成无限序列。

常规的解决方法是,生成一个满足要求的很大的列表,这个列表需要保存在内存中,很明显内存限制了这个问题。

如果使用生成器就不需要返回整个列表,每次都只是返回一个数据,避免了内存的限制问题。

生成器源码分析

生成器的源码在Objects/genobject.c

调用栈

在解释生成器之前,需要讲解一下Python虚拟机的调用原理。

Python虚拟机有一个栈帧的调用栈,其中栈帧的是PyFrameObject,位于Include/frameobject.h

栈帧保存了给出代码的的信息和上下文,其中包含最后执行的指令,全局和局部命名空间,异常状态等信息。f_valueblock保存了数据,b_blockstack保存了异常和循环控制方法。

举一个例子来说明,

那么,相应的调用栈如下,一个py文件,一个类,一个函数都是一个代码块,对应者一个Frame,保存着上下文环境以及字节码指令。

每一个栈帧都拥有自己的数据栈和block栈,独立的数据栈和block栈使得解释器可以中断和恢复栈帧(生成器正式利用这点)。

Python代码首先被编译为字节码,再由Python虚拟机来执行。一般来说,一条Python语句对应着多条字节码(由于每条字节码对应着一条C语句,而不是一个机器指令,所以不能按照字节码的数量来判断代码性能)。

调用dis模块可以分析字节码,

其中,

生成器源码分析

由了上面对于调用栈的理解,就可以很容易的明白生成器的具体实现。

生成器的源码位于object/genobject.c

生成器的创建

send与next

nextsend函数,如下

从上面的代码中可以看到,sendnext都是调用的同一函数gen_send_ex,区别在于是否带有参数。

字节码的执行

PyEval_EvalFrameEx函数的功能为执行字节码并返回结果。


举一个例子,f_back上一个Frame,f_lasti上一次执行的指令的偏移量,

结果如下,其中第三行的英文为操作码,对应着上面的opcode,每次switch都是在不同的opcode之间进行选择。
1 2 收藏 1 评论

相关文章

可能感兴趣的话题



直接登录
最新评论
跳到底部
返回顶部